
Pergamon 
Computers chem. Engng Vol. 21, No. 8. pp. 875-890, 1997 

Copyright © 1997 Elsevier Science Ltd 
Printed in Great Britain. All fights reserved 

PII: S0098-1354(96)00311-0 0098-1354/97 $17.00 + 0.00 

Nonlinear partial least squares 

E. C. Malthouse,* A. C. Tamhane and R. S. H. Mah 

Northwestern University, Evanston, IL 60208, U.S.A. 

(Received 8 November 1995; revised 17 June 1996) 

Abstract 

We propose a new nonparametric regression method for high-dimensional data, nonlinear partial least squares 
(NLPLS), which is motivated by projection-based regression methods, e.g. PLS, projection pursuit regression and 
feedforward neural networks. The model takes the form of a composition of two functions. The first function in the 
composition projects the predictor variables onto a lower-dimensional curve or surface yielding scores, and the 
second predicts the response variable from the scores. We implement NLPLS with feedforward neural networks. 
NLPLS often will produce a more parsimonious model (fewer score vectors) than projection-based methods. We 
extend the model to multiple response variables and discuss situations when multiple response variables should be 
modeled simultaneously and when they should be modeled with separate regressions. We provide empirical results 
that evaluate the performances of NLPLS, projection pursuit, and neural networks on response variable predictions 
and robustness to starting values. © 1997 Elsevier Science Ltd 

1. Introduction 

The regression problem involves modeling a function 
between one or more predictor variables and one or more 
response variables from a dataset of observations. Let 
X(n x p) and Y(n × q) be mean-centered matrices of p 
predictor and q response variables over n data vectors 
(subjects, cases, items, etc.). Denote the ith row vectors 
of X and Y by xi'(l × p) and y+'(l x q), respectively. The 
response vector y+ is hypothesized to be some continuous 
function ~o of predictor vector x+ with additive error e~: 

Yi = ~x+) + e i. ( 1 ) 

The elements in Y are assumed to take values in a 
continuous set. The regression problem is to construct an 
estimate ~, for ~,. 

Many nonparametric models have been proposed for 
+p. Several methods that have been highly successful in 
practice take the following form: 

(p(Xi)---- '~ hk(Xi'Uk), (2) k=l 

where Uk (P x 1) is called a loading vector and h k is a 
univariate smooth transfer function. We call methods 
that fit models of this form projection-based regression 
methods. The product S~k=X~'Uk is called a score and it 

* To whom correspondence should be addressed. 

gives the length of the projection t of x~ onto Uk. Each 
term in the sum, hk(Xi'U 0 '  is called a ridge function 2, 
because it is constant on hyperplanes orthogonal to Uk, 
e.g. {x: X'Uk=C} for some c. Each ridge function projects 
the predictor variables onto a vector and relates the 
lengths of the projections to the response variable with 
the transfer function, h v Geometrically, the projection- 
based regression methods stack the surfaces defined by 
the ridge functions on top of each other to approximate 
~.This paper proposes two nonlinear extensions of the 
projection-based regression methods, called nonlinear 
partial least squares (NLPLS). The two extensions are 
sequential NLPLS and simultaneous NLPLS. Sequential 
NLPLS generalizes the ridge functions used by the 
projection-based methods by projecting the predictor 
variables onto curve 3 fk:~-'- '~ p instead of vector Uk. The 
sequential NLPLS model has the form: 

~x+)= Y. hk(St~(Xi)), (3) k=l 

' The projection of x onto vector u is given by proj,x=(x'u/ 
u'u)u. The expression (x'u/u'u) gives the length of the 
projection and u gives the direction. When u has unit length, 
x'u gives the length of the projection; otherwise x'u is 
proportional to the length of the projection. 
2 A ridge function is a function that maps ,¢1t P---,.qt of the form 
h(x'u), where u is a p × I vector and h is a univariate smooth 
transfer function. 
3A curve in .qt p is a vector of smooth functions 
f(s)f(~t(S),...fp(S))' that maps ~qt into 9{ p. For example, a circle 
is an example of a curve in 9t 2, f(s)=(cos s, sin s)'. 
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where Srk:,cl(P---~l is called a projection index and is 
analogous to x 'u  giving the location of the projection of 
x+ onto curve fk in terms of arc length; hk is a univariate 
smooth transfer function relating the arc lengths to the 
response variable. 

Simultaneous NLPLS is designed for a slightly 
different problem than is sequential NLPLS. In problems 
with high-dimensional predictor variables, one is often 
not interested in estimating ~0 over its entire domain. 
Instead, one is only interested in estimating ~0 over a 
small subspace of ~(P. A common example of this 
situation is when there is multicollinearity among the 
predictor variables, i.e. when there are dependencies 
among the predictor variables and the rank of matrix X 
is less than p. When this is the case, the observed 
predictor variables will lie approximately in a lower- 
dimensional linear subspace of ~P. The projection- 
based methods [equation (2)] and sequential NLPLS 
make no attempt to model explicitly the lower-dimen- 
sional subspace in which the predictor variables lie. In 
each step of the algorithm, they choose a vector Uk SO 
that the lengths of the projections onto this vector will be 
good predictors of the response variable. Simultaneous 
NLPLS generalizes the philosophy behind the projec- 
tion-based methods by selecting an r-dimensional sur- 
face + f in 9( p in which the predictor variables lie and that 
facilitates predicting of the response variables. The 
simultaneous NLPLS model is: 

~xi)  =h(sf(xi)), (4) 

where st: ~1~ p --" ~(r is a projection index, giving the r- 
dimensional coordinates of the projection of x k onto f, 
and h: ~U---.~ is a transfer function.We also propose a 
multivariate version of simultaneous NLPLS that models 
multiple response variables. Instead of observing a 
single n ×1 response variable y, suppose we have n 
observations on q response variables Y(n × q). Like the 
univariate version, multivariate NLPLS finds the r- 
dimensional surface f in which the predictor variables 
lie; it extends NLPLS by also finding the s-dimensional 
surface g in ~l q in which the response variables lie. 
Multivariate NLPLS relates the predictor variable scores 
to the response variable scores with a transfer function h. 
The model has the form: 

9~(Xi) = g(h(sf(xi))), (5) 

where projection index sf maps ~(p....ff~r, transfer 
function h maps . ~ t ' - - ~ ,  and response variable surface 
g maps ~l{+---.~t q. Section 2 gives an overview of some 
commonly used projection-based regression methods. 
Section 3 describes the nonlinear principal components 
analysis (NLPCA) method, which we use to model the 
curves and surfaces in the NLPLS method. Section 4 
describes the NLPLS models and how we estimate them. 
Section 5 presents a diagnostic for detecting nonlinear 
relationships among predictor and/or response variables. 
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Section 6 presents the results of some empirical tests that 
compare NLPLS to projection-based regression meth- 
ods. Section 7 summarizes our conclusions and gives 
directions for future research. 

2.  P r o j e c t i o n - b a s e d  r e g r e s s i o n  m e t h o d s  

The general form of a projection based regression 
method was given in equation (2). The purpose of this 
section is to give some details of the models, estimation, 
and approximation properties of some important projec- 
tion-based regression methods to motivate our exten- 
sions. 

2.1. Partial least squares 

This section provides a brief overview of the Partial 
Least Squares (PLS) regression method. There are two 
PLS algorithms, PLSI for problems with a univariate 
response variable (q=l) ,  and PLS2 for problems with 
multivariate response variables (q>l) .  Sequential 
NLPLS is a direct generalization of PLSI and we 
summarize only PLSI; see Breiman and Friedman 
(1994) for discussion of the PLS2 algorithm. 

The PLS 1 algorithm is a sequential algorithm. In the 
kth step of the algorithm, PLS 1 extracts a single loading 
vector (Uk) from the predictor variables so that the 
resulting scores (Sk) are "good predictors" of the 
response variable residuals from the previous step. It 
next regresses the predictor and response variable 
residuals on the corresponding scores yielding regres- 
sion coefficients w k and t b respectively. Then it 
computes new residuals for the predictor and response 
variables. This process is repeated on the residual 
matrices until some stopping criterion is met. The steps 
in the PLSI algorithm are as follows: 

O. Initialize. Let dimension index k= 1. Let D O and e0 
be copies of (mean-centered) X and y, respectively. 
In subsequent iterations D k and ek will contain 
predictor and response variable residuals. 

1. Select loading vectors and scores. Define loading 
vector: 

Ilk = Dk- )ek -I ~ Cov(Dk_ i,ek_ l) 

and score vector: 

(6) 

S k = D  k_ l Uk . (7)  

The symbol ~ means "proportional to." Note that 
the columns in Dk_ ~ that are highly associated with 
ek_ ~ will receive large loadings relative to the 
columns with smaller associations. 

2. Regress predictor and response variables on 
scores. The regression coefficients Wk and tt, are 
estimated with OLS: 

Wk=[(Sk'S0- Sk Dk-,] - S~Sk (8) 

+ An r-dimensional surface in ,cliP is a vector of multivariate 
functions f (s )= ~(s),...,fp(S))' that maps ~tr into .9(P. and 
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e~_ iSk 
/~k=(Sk'Sk) - ISk ' e  k_ i = S~Sk • (9) 

3. Compute residual matrices. The residuals are 
computed with: 

Dk=Dk- I --  SkWk' and eke k _ i - -  Skl-~. 

4. Loop. Increment k and return to (1) until the 
residual matrices Dk and ek are sufficiently small. 

The PLS predictions are given by: 

y---- ~ Sk/.,~ -- "~ Ok_lUk/.~, (10) 
k=l  k=l  

where r is the number of factors extracted. Because the 
process is repeated on the residuals of the predictor 
variables themselves instead of on the predictor varia- 
bles, PLS might not appear to fit exactly the form in (2). 
Frank and Friedman (1993) (Section 3) discuss how the 
PLS algorithm can be placed into the projection-method 
form. 

2.2. Projection pursuit regression 

Friedman and Stuetzle (1981) first proposed the 
projection pursuit regression method for univariate 
response variables 5. Project pursuit estimates the param- 
eters in equation (2) with a sequential algorithm. In the 
kth step of the algorithm (k= 1 ..... r), it selects loading 
vector Uk and transfer function h k s o  that the ridge 
function h k ( X ' U k )  gives good predictions of the response 
variable residuals from the previous k - 1  steps. The 
algorithm is as follows: 

O. Initialize. Let dimension index k= 1. Let e0=y. In 
subsequent iterations, e k will contain response 
variable residuals. 

1. Choose initial loading vector and transfer func- 
tion. Let u ~ ~ll' be any unit-length p vector and fit 
a smooth curve, e.g. a cubic spline, hk tO estimate 
ek- I from Xu. 

2. Optimize. With h k fixed, estimate Uk using: 

u k = argmin i=1 ~ (ek-  I , i -  hk(u 'x i ) )  2, 

where e k _ I.i is the ith element of the residual vector 
ek-I" Fit a smooth curve h k to estimate e k_ ~ from 
XUk. 

3. Compute residuals. Compute residuals using: 

ek,i = ek - I,i --  hk(xi '  Uk)" 

4. Loop. Increment k and return to (1) until the 
residual vector ek is small. 

Diaconis and Shahshahani (1984) develop some 
approximation theory results for models of the form in 
equation (2). In particular, the authors show that project 
pursuit can uniformly approximate arbitrary continuous 
functions on [0, 1] p and establish necessary and 
sufficient conditions for exact representation of tp with a 
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finite sum of ridge functions (i.e. finite r). They give the 
following examples of functions that require infinite r 
for an exact representation: 

~x,,x2)=e .... and ~x,,x2)=sin(x,x,.). (11) 

2.3. Feedforward neural networks 

Feedforward neural networks with one hidden layer 
can also be written in the form of equation (2). A three- 
layer neural network with p input nodes, r hidden nodes, 
and one output node fits a model of the form: 

~x)= ~: o~x'uk)t~, (12) 
k=l 

where or(.) is a fixed transfer function with a sigmoidal 
shape, e.g. the scaled logistic function a(s)=(l  - e - ~ ) /  
(1 +e-~). Weight values Uk(P × l) and tl, (k= 1 ..... r) are 
selected so that the following least squares objective 
function is minimized: 

min ~ Ily i - ~ o(xi'uk)vJI z. 
ul,...,uvul,..., ~ i=l k=l  

By defining hk(s)= qo(s), a feedforward neural network 
is recognized as a projection-based regression method 
[equation (2)]. Neural networks are different from all 
other projection-based regression methods discussed 
here in two main ways: (1) parameters (weights) Uk and 
t~ (k= 1 ..... r) are estimated simultaneously vis-a-vis with 
a sequential algorithm that estimates each ridge function 
separately; and (2) vector Uk is not constrained to have a 
unit length. By changing the length of Uk, one can stretch 
or compress the sigmoidal function o(.); ok is a scaling 
factor. Cybenko (1989) has shown that these networks 
can represent arbitrary continuous functions under weak 
conditions. The approximation improves with more 
hidden nodes. 

2.4. Extensions of PLS 

Several authors have extended PLS to model the 
general regression problem defined in equation (I). 
These methods are designed for problems with a low 
observation-to-variable ratio, multicolinearity among the 
predictors, and a nonlinear relationship between pre- 
dictor and response variables. Partial least squares is not 
well suited for these problems because its model is 
nearly linear 6. Projection pursuit and neural networks are 
not well suited either because they must estimate too 
many parameters with too few observations (Frank, 
1994). The PLS extensions overcome the limitations of 
PLS by modeling the transfer functions nonparamet- 
rically. They estimate fewer parameters than projection 
pursuit and neural networks by first selecting the loading 
vectors with PLS or principal components analysis 
(PCA) (Mardia et al., 1979) and, with the loading 

~See Hwang et ai. (1995) for discussions of how projection ~ See Frank and Friedman (1993) for discussion ofwhythe PLS 
pursuit can model multivariate response variables, model is "nearly" linear. 



878 E. C. MALI'HOUSE et al. 

vectors fixed, then optimizing the choice of transfer 
function. Frank (1994) proposes "Neural Networks 
based on PCR and PLS components nonlinearized by 
Smoothers and Splines" for univariate response varia- 
bles. Several similar extensions have been proposed for 
PLS2 including quadratic PLS with two blocks (Wold et 
al., 1989), neural network PLS (Qin and McAvoy, 1992) 
and spline PLS (Wold, 1992). 

3. Nonlinear principal components analysis 

The NLPLS generalizes the projection methods by 
projecting the predictor variables onto curves or surfaces 
instead of one-dimensional vectors. Several methods 
have been proposed to extract a curve or surface from a 
set of p-dimensional observations including Nonlinear 
Principal Components Analysis (NLPCA) (Kramer, 
1991), which estimates a curve or a surface passing 
"through the middle" of the observations using least 
squares: 

min ~ Ilxi-f(sr(xi))ll 2, (13) 
f.~ i=1 

where st maps from ~lt P to ~ r  and is called a projection 
index. Function f is a vector of smooth functions 
mapping from ffC to ffl p (r<p) called an r-dimensional 
surface; when r= 1, f is usually called a curve. The 
projection index, st reduces the dimension of x. The 
composition of functions f(st(x~)) gives the p-dimen- 
sional coordinates of the projection 7 of x~ onto a curve or 
surface f. Functions st and f are modeled nonparamet- 
rically. The NLPCA models each with three-layer neural 
networks. A five-layer neural network is used to model 
the composition of functions f and s t. Layers 1-3 model 
function st and layers 3-5 model function f. The five- 
layer NLPCA network has p nodes in the input layer, r 
nodes in the third (bottleneck) layer, and p nodes in the 
output layer. The top part of Fig. 1 shows an example of 
an NLPCA network. 

4. Nonlinear PLS 

4.1. Simultaneous univariate NLPLS 

The general form of the simultaneous univariate 
NLPLS model is: 

~xi)  =h(st(xi)), (14) 

where st: ,fftP---.~ f is a projection index, giving the r- 
dimensional coordinates of the projection of xk onto 
curve f, and h: flit to ~ is a transfer function. The curve, 
projection index, and transfer function in this model are 
selected to minimize the following objective function: 

min ~ [llxi-f(st(xi))ll2+llyi-h(st(xi))ll2]. (15) 
r~bh lffil 

7 Malthouse (1995) shows that since NLPCA models s t with a 
continuous function, the point on curve f indexed by st(x) is not 
always the point on f that is closest to x, and is hence not a 
"projection" in a strict sense. 

Function sf Function f 

L Xl  :~: 

P 

S 

Function h 
Fig. 1. Neural network architecture of NLPLS. A linear 
function is denoted by e, and a sigmoidal function is denoted 
by o'. 

Just as PLS I regresses X and y on its scores [equations 
(8) and (9)], the two terms in the NLPLS objective 
function regress X and y on the NLPLS scores. The first 
term is the NLPCA objective function (13), which 
specifies that the dimension of the predictor variables be 
reduced. The second term regresses y on the scores. 
Without the first term, the objective function (15) could 
be minimized by fixing h to be the identity function 
(h(s)=s), setting r= 1, and training s t to estimate 
which would essentially be a three-layer neural net- 
work. 

The NLPLS selection of curve f attempts to generalize 
the PLS selection of loading vectors in equation (6). 
NLPLS simultaneously estimates functions f, st, and h to 
minimize objective function (15), and the score values 
therefore must be good predictors of both X and y. 
Consequently, the curve extracted from the predictor 
variables and its parameterization need not to be the 
same as the curve extracted by NLPCA. 

We implement NLPLS by modeling the terms in 
equation (15) with a five-layer neural network. Fig. I 
shows an example of an NLPLS network. The top part of 
the network (labeled "NLPCA") is an NLPCA network 
(simultaneous) and was discussed in Section 3. The 
bottom part of the network (labeled "Function h") 
models the transfer function h, which predicts y. The 
inputs to the nodes in the bottom part of the network are 
from the bottleneck node(s) in layer 3 of the NLPCA 
network. Layers 1, 2, and 3 (labeled "Function st") 
model function st. Thus the activation of the node in the 
bottleneck layer (layer three) gives the coordinates of the 
"projection" of xi onto f. Layers 3, 4, and 5 in the top 
half of the network (labeled "Function f ' )  model curve/ 
surface f. Layers 3, 4, and 5 in the bottom half of the 
network (labeled "Function h") model the NLPLS 
transfer function h. Direct ("linear bypass") connections 
are allowed between layers 1 and 3 and layers 3 and 5, 
but are not allowed to cross layer 3. See Section 5 for a 
discussion of how to pick r. 

The NLPLS has the same approximation properties as 
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three-layer neural networks since three-layer neural 
networks are a special case of equation (14). When r=p 
and s~x)=f(x)=x (identity mapping), function h is a 
three-layer neural network that maps X to y. 

4.2. Sequential univariate NLPLS 

One reason for the success of the projection-based 
regression methods s is that they estimate their models in 
a sequential manner (Friedman and Stuetzle, 1981). The 
ridge functions in (2) are estimated sequentially to give 
the best fit to the response variable residuals from the 
previous step. Sequential NLPLS is a direct general- 
ization of this approach and fits a model of the form: 

~(Xi)= ~ hk(StL(Xi)), (16) k=l 

where stk:fllP--*9l is called a projection index giving the 
location of the projection of xi onto curve fk in terms of 
arc length and h k is a univariate smooth transfer function 
relating the arc lengths to the response variable. The 
projection-based methods project the predictor variables 
onto vectors whereas sequential NLPLS projects the 
predictor variables onto curves. Sequential NLPLS find 
the projection indices, curves, and transfer functions 
with the following algorithm: 

O. Initialize. Let dimension index k= 1. Let e0 be a 
copy of (mean-centered) y. 

1. Select curve and parameterization. Define curve fk, 

projection index sty, and transfer function kk to 
minimize the simultaneous univariate NLPLS 
objective function (15). This is equivalent to fitting 
a simultaneous univariate NLPLS model with 
r= l. 

2. Compute response-variable residuals. 

eki = e k - I  . i -  fk(Stk(Xi)) • 

3. Loop. Increment k and return to (I) until the 
residual vector ek is sufficiently small. 

The sequential NLPLS model shares the approxima- 
tion properties of projection pursuit since the projection 
pursuit model is a special case of (16). The projection 
indices st can model linear functions, e.g. the uk in (2), 
and the transfer functions h k c a n  model continuous 
functions from 9] to fit. 

4.3. Multivariate NLPLS 

The model for simultaneous multivariate NLPLS is: 

~x~) = g(h(s~x0)), (17) 

where projection index s t maps ~p_..+~)~r, transfer 
function h maps ~ ' - - * ~ ,  and response variable surface 
g maps ~ '---*~ q. The dimensions of the reduced-order 

8 This excludes the feedforward neural networks introduced in 
Section 2.3, which are trained with global nonlinear optimiza- 
tion algorithms. 
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space for the predictor and response variables are r and 
s, respectively. The parameters in this model are selected 
to minimize the following objective function: 

min 

[llxi - f(sf(xi))ll 2 + Iltg(yi) - h(st(xi))ll 2 + Ilyi - g(tg(yi))ll 2]. 
(18) 

The first and last terms in equation (18) are NLPCA 
objective functions [equation (13)], which specify that 
the dimensions of the predictor and response variables 
be reduced. The second term specifies that function h 
relate the predictor variable scores to the response 
variable scores as closely as possible. 

Malthouse (1995) shows that the intrinsic dimension 
of the predictor variables should be greater than or equal 
to the intrinsic dimension of the response variables, i.e. 
r - s. The intuition behind this result is that if the 
response variables are assumed to be determined by 
some function tp of the predictor variables, the dimen- 
sion of the intrinsic domain of tp must be at least as great 
as the dimension of the range of tp. 

We implement multivariate NLPLS with a five-layer 
neural network similar to the simultaneous univariate 
NLPLS network. Fig. 2 shows an example of an NLPLS 
network. The NLPLS models functions st, f, t s, g, and h 
with three-layer, feedforward neural networks. The top 
part of the network (labeled Function st and Function f) 
is an autoassociative NLPCA network and minimizes the 
first term in the objective function (18). The bottom part 
of the network (labeled Function t s and Function g) is 
also an autoassociative NLPCA network and minimizes 
the last term in the objective function (18). The middle 
network minimizes the middle term in the objective 
function (18). 

Feedforward neural network simulators are pro- 
grammed to solve the least squares problem that 
minimizes the squared difference between observed and 
predicted response variables over a training set. The 
middle term in the objective function 
(llts(yi)- h(st(xi))ll z) does not correspond to supervisory 
training because it minimizes the differences between 
the outputs of s pairs of nodes rather than between the 
outputs of nodes and fixed target values. Networks with 
this additional term in their objective function can be 
trained with a standard feedforward network simulator 
by including s difference nodes (labeled on Fig. 2) 
(Briesch and Malthouse, 1994). The purpose of a 
difference node is to minimize the difference between 
the outputs of two nodes and thus to make them as equal 
as possible. Difference nodes are treated as output nodes 
with a target value of 0 for all training vectors. The two 
nodes whose output difference is to be minimized have 
arcs feeding into the difference node, one with constant 
weight + 1 and the other with constant weight - 1. After 
the objective function is minimized, the parts of the 
network modeling t s, f, and difference nodes can be 
discarded and the output of h(~x))  is given to g to make 
response-variable predictions as given in equation (17). 
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Function f 

X l  

X2 ~c2 

Node 

0 

Yl 

Y2 

Yl 

Function tg 
Fig. 2. Multivariate NLPLS network architecture. 

5. Diagnostics 

This section proposes diagnostics to answer the 
following questions. (1) Are simultaneous NLPLS 
(univariate and multivariate) appropriate for this prob- 
lem? (2) How should one pick values of r and s in 
simultaneous NLPLS models? In this section, we show 
that the answers to both questions depend on knowing 
the intrinsic linear and nonlinear dimensions of the 
predictor and response variable spaces. The problem of 
finding the linear dimension of a set of multivariate 
observations, sometimes called the number of factors 
problem, has been thoroughly studied and, according to 
Horn and Engstrom (1979), no fewer than 50 tests have 
been proposed. The scree plot method (Cattell, 1966) 
has gained wide acceptance and is available in most 
commercial statistical software packages. It uses the 
eigenvalues from a principal components analysis to 
determine the number of factors to keep. If X is a mean- 
centered matrix of observations and At---A.,->. - .~Ap-->0 
are the eigenvalues of X'X, then Aj gives the variance 
accounted for by the jth principal axis (Mardia et al., 
1979). A scree plot is a plot of Aj against j; Fig. 3 shows 
the scree plot of the predictor variables of an example 
that will be discussed later in Section 6.3. The problem 
is to determine which principal directions contain useful 
information and which contain noise. The term scree 
refers to the rubble at the base of a mountain and a scree 
plot will ideally look like a mountain. The real factors 
have eigenvalues on the steep slope of the scree plot 
making up the mountain and the factors containing noise 
have eigenvalues making up the rubble. To determine the 
number of factors, look for an "elbow" in the plot, which 
marks the beginning of the scree. In the example, the 

Function g 

elbow for principal components analysis (PCA) is 
located around r=2 or r=3. The observations appear to 
lie on a surface of dimension r= 1, since components 2, 
3,... account for hardly any variance. 

Simultaneous NLPLS models relationships among 
predictor and/or response variables, It is therefore well- 
suited for problems where the predictor and/or response 
variables lie in a nonlinear subspace. When this is not 
the case, simultaneous NLPLS offers no advantage over 
other methods. To determine if simultaneous NLPLS 
should be used on a problem, compare the number of 
nonlinear dimensions required to describe the locations 
of the observations with the number of linear dimen- 
sions. If the number of nonlinear dimensions is smaller 

8 

o PGA 

LPCA 

Component number 
Fig. 3. Scr¢0 plot for composite materials example. 
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than the number of linear dimensions, the observations 
form a surface that is not linear; if the two are the same, 
the surface is linear and other regression methods should 
be used. Continuing the example given above, because 
the nonlinear dimension is smaller than the linear 
dimension, simultaneous NLPLS might have an advan- 
tage over projection based methods. Since the predictor 
variables lie on a curve, r= 1 bottleneck nod is required 
for the predictor variables. The results of an analysis of 
these data are given in Section 6.3. 

6. Examples 

This section presents the results from some empirical 
tests that compare the performances of the NLPLS 
methods with three-layer neural networks and project 
pursuit. We chose empirical problems with different 
characteristics to juxtapose the performances of these 
methods. Section 6.1 presents the "surface problem," 
which compares univariate simultaneous and sequential 
NLPLS on their ability to model regression functions 
with three-dimensional predictor variables sampled from 
a two-dimensional surface. Section 6.2 presents the 
"surface problem with multiple response variables," 
which compares simultaneous univariate NLPLS with 
multivariate NLPLS on a surface problem. Section 6.3 
presents the "composite materials" problem, which 
compares the performances of the methods on a high- 
dimensional problem with p = 466 and q = 2. We compare 
the methods on the following criteria: 

1. Function approximation. We compute the coefficient 
of determination (R 2) of the predictions from each 
method to measure how well the methods approx- 
imate a given response surface. 

SSE X ~ Cvu-Yu) 2 
R2=I - s ~ = l _  i=~ j=l~ (Yu-Y) 2 - '  (19) 

i=l j=l 

where 5'aj is the predicted value of y~j (jth element of 
vector ~x3),  and ~j is average of the elements in the 
jth column of matrix Y ~ j =  ,.~i y~n). 

2. Robustness to starting values. We compare the 
methods on whether the R 2 values change with 
different starting values. 

All simulated data sets were generated in S-Plus. The 
NLPLS, NLPCA, and three-layer neural networks were 
implemented using a neural network simulation pack- 
age 9 developed by the first author in the C programming 
language. The package includes a network descriptor 
language that allows the user to define any feedforward 
neural network architecture, the limited-memory Broy- 
den--Fletcher-Goldfarb-Shanno (BFGS) (Liu and Noce- 
dal, 1989) non-linear optimization routine for determin- 
ing the weight values, and routines for computing 
summary statistics, function estimates, and residuals. To 
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estimate projection pursuit models, we use the S-Plus 
function ppreg. 

6. I. Surface problems 

This section presents the results of nine mathematical 
examples that are designed to compare the performances 
of the two univariate NLPLS algorithms, three-layer 
neural networks, and projection pursuit. The examples 
all have p=3 predictor variables and q= l  response 
variables. The predictor variables were sampled from an 
elliptic paraboloid: (s) 

x=f(s,,s2)= s2 • (20) 

\s,~+s~ 
The response variable is a function of the score values. 
We used three different transfer functions and added one 
of three different amounts of noise to the functions to 
give nine total examples. Without noise, the predictor 
(/zij) and response (u,) variables for the three problems 
were generated as follows: 

• Linear. Let score s i j - U [ - I , 1 ] , i = l  ..... 200, and 
j =  1,2. Let/z~=f(s,,si2) using ffrom equation (20), and 
vt =ai l  + st2. 

• Quadratic. Let score s~j- U[ - 1,1],i= 1 ..... 200, and 
j =  1,2. Let/zi=f(s~,si2) using ffrom equation (20), and 
q=a~,+s~2. 

• Exponential. Let score s~j~ U [ -  1,1],i= 1 ..... 200, and 
j=  1,2. Let tzi=f(si,,si2) using f from equation (20) and 
vl = exp(s,,s~2. 

The first subproblem is noiseless, with x~=/.q, and 
y~= u,. We added Gaussian noise to/~ and 14, in the second 
and third subproblems, i.e. x~=/~ + 6, and y~=v,+¢~, 
where 3, (3 × 1) and ~ (1 × 1) are normally distributed 
noise vectors. The signal-to-noise (SIN) ratios in the 
second and third problems are 8 and 4, respectively, e.g. 
when SIN=4,8,i--N(O,(r~I4), where o-~ is the sample 
variance of the jth element of tzi . 

The transfer functions increase in difficulty. There is a 
linear relationship between the predictor and response 
variables in the linear problem; thus linear regression, all 
of the projection-based regression methods in Section 2, 
and the NLPLS methods are expected to do well. There 
is an additive t° relationship between the predictor and 
response variables in the quadratic problem and all of the 
nonlinear projection-based regression methods should 
do well. Likewise, both the simultaneous and sequential 
NLPLS methods should do well. The exponential 
problem is the most difficult since the transfer function is 
a Diaconis function [equation ( l l )]  and cannot be 
represented exactly by a sum of finite number of ridge 
functions; thus the nonlinear extensions of PLS 
described in Section 2.4 cannot represent it exactly 
because r must be at most p in these models. Sequential 
NLPLS should require more terms than it does for the 

9The package is available from http://www.kellogg.nwu.edu/ 
faculty/malthous. 

t°An additive model (Thisted, 1988, p. 229) has the form .'~ 
j=l  

hj(xlj), where hi(.) maps .%--,,qt. 
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quadratic problem to give a good approximation. Three- 
layer neural networks, projection pursuit, and simultane- 
ous NLPLS, should all do well. 

Since there are nonlinear relationships among the 
predictor variables, simultaneous NLPLS will require 
fewer factors than the projection-based regression meth- 
ods. The predictor variables can be described by two 
nonlinear factors, while three linear factors are required 
to describe them. In this sense, the simultaneous NLPLS 
models will be more parsimonious than the projection- 
based regression models. 

We fitted three-layer neural networks (labeled NN), 
simultaneous NLPLS (labeled Sim), and r= l ,  2, 3 
sequential NLPLS (labeled Seql, Seq2, and Seq3) 
models for each of the nine examples with twenty 
different sets of starting values. Thus we trained 3 
(functions) ×3  (noise levels) X 5 (Seql, Seq2, Seq3, 
Sim, NN) × 20 (starting values) =900 networks to give 
the results in this section. We also fitted projection 
pursuit (labeled PPR) models with r= 1 ..... 5 and selected 
the model with the largest training R 2 value. We show 
the R 2 values from these runs in Figs. 4--6. Boxplots with 
the word "Linear" in their title give results for problems 
with linear transfer functions, "Quadratic" for quadratic 
transfer functions, and "Exp" for exponential transfer 
functions. The abbreviation "Tr" indicates results from 
the training data and "CV" indicates cross-validation 
data. The first column of box plots shows the training R 2 
values and the second column shows the cross-validation 
(CV) R ~ values. Some of the Sequential NLPLS runs 
produced negative R 2 values and we have omitted these 
runs from the plots. In cases with negative R-' values, we 
indicate the number of runs in parentheses at the bottom 
of the plot. The R'- values can be negative when a model 
overfits the data. If a model describes all the stochastic 
variation in the data and fails to extract the underlying 
surface, the predictions on a cross-validation data set can 
be poor. Note the following from the box plots: 

• Sequential NLPLS overfits data. In most cases, the 
sequential NLPLS training R-" values increase as r 
increases, while the cross-validation R 2 values 
decrease. In several problems, the sequential NLPLS 
training R 2 values are better than the R-" values from 
the other methods, but the other methods have larger 
cross-validation R 2 values. This suggests that sequen- 
tial NLPLS has a tendency to overlit the data. 

• Curves picked to predict y. The NLPLS selection of 
curves attempts to generalize the PLS selection of 
loading vectors in (6). NLPLS simultaneously esti- 
mates functions f, sr and h to minimize the objective 
function (15) and the score values must be good 
predictors of both X and y. Consequently, the curve 
extracted from the predictor variables need not be the 
same as the curve extracted by NLPCA. In Fig. 7 we 
plot the curves fl, f2, f3, and f4 from one of the 
sequential NLPLS models that gave a good fit to the 
data. The NLPLS selects each curve to estimate a 
different vector, since residuals are used in subsequent 
iterations. The first three curves (k= 1, 2, 3) pick nearly 

vertical slices through the paraboloid, while the fourth 
curve is very nonlinear and has a horizontal "N" 
shape. 

• First factor in sequential NLPLS tries to do it all. The 
training box plots for the second and third sequential 
NLPLS factors (Seq2 and Seq3) do not seem to be 
better than the results with only one factor (Seql). Fig. 
8 shows the curve extracted for the first factor of one 
of the sequential NLPLS models that has small R-" 
values for the r=2 and three-factor solutions. The 
curve tries to wiggle around throughout the entire 
domain of the regression function. We suspect that the 
response variable residuals from this model are highly 
variable and difficult to model with subsequent 
factors. 

• Large variance of  sequential NLPLS R 2 values. The 
sequential NLPLS boxes are almost always sub- 
stantially longer than the boxes for the other methods 
(indicating high variation), and sequential NLPLS 
often produces extreme R 2 values, e.g. there is a cross- 
validation R 2 value for Seq3 in the quadratic problem 
with SN=4 that is approximately -80 .  We conclude 
that sequential NLPLS is highly sensitive to starting 
values. 

• NN, simultaneous NLPLS, and PPR are equally good. 
The three-layer neural network, simultaneous NLPLS, 
and projection pursuit solutions are equally good for 
the problems studied here. The simultaneous NLPLS 
and three-layer neural network models seem to be 
equally robust to starting values, since the boxes are 
roughly the same size in most cases. One of the 
simultaneous NLPLS models for the linear problem 
with SN=4 produced a poor model with R2~0.1. 

6.2. Surface problems with multivariate response 
variables 

The difference between multivariate NLPLS and the 
univariate NLPLS methods is that multivariate NLPLS 
can model multiple response variables (q> 1) simultane- 
ously. This section presents some empirical results that 
attempt to evaluate whether multiple response variables 
should be modeled with separate univariate models or 
with multivariate NLPLS. Several recent papers, includ- 
ing Frank and Friedman (1993), Garthwaite (1994), 
Brooks and Stone (1994) and Breiman and Friedman 
(1994) have discussed when PLS2 and related linear 
methods should be used instead of separate univariate 
models. Breiman and Friedman (1994, p. 32) find that 
"the best of the multiple response procedures considered 
[in their study, not including two-block PLS] can 
provide large gains in the expected prediction accuracy 
(for each response), over separate single response 
regressions, with surprisingly little risk of making things 
worse?' 

The multivariate NLPLS approach also has several 
potential problems that must be balanced with the 
benefits mentioned above: 

1. The size of parameter space grows exponentially with 
the number of parameters to be fit. As the number of 
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response variables grows, the number of parameters three-layer feedforward neural network and NLPLS 
that must be estimated also grows. Finding a global methods that estimate all parameters simultaneously. 
minimum can become more difficult as the size of the 2. The response variable score values must be chosen to 
search space grows. This is particularly true with the predict all the response variables. When the response 
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Fig. 4. Box plots of R 2 values for surface problem with univariate response variable and linear transfer function using different 
starting values. Abbreviations: CV, cross-validation; Sire, simultaneous NLPLS; Seq, sequential NLPLS. The numbers in 
parentheses give the number of runs generating negative R 2 values. 
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variables do not have a nonlinear relationship, the 
simultaneous model can require more nonlinear 
factors than the separate models. 

This example extends the surface problem discussed 

in Section 6.1 so that simultaneous univariate NLPLS 
and multivariate NLPLS can be compared. In addition to 
having multiple predictor variables, the problems in this 
section also have multiple response variables which are 
nonlinearly related to each other. We sampled predictor 
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variable scores s,j ~ U[ - 1,1], i =  1 ..... 200,  j =  1,2 and The relationships between observed variables and scores 
defined the response variable scores tij as fo l lows:  are elliptic paraboloids: 
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Fig. 7. Sequential NLPLS curves for the paraboloid example. 

There is a nonlinear relationship among both the 
predictor (/.0 and response (v) variables, and NLPLS 
should require two NLPLS factors to model the 
underlying surface. The relationship between the pre- 
dictor and response variable score vectors is linear. 

Three subproblems were generated. The first sub- 
problem is noiseless with xi=/~ and yi=q. Gaussian 
noise was added to /~ and v in the second and third 
subproblems, i.e. xi=/~+~ and y~=q+~, where 
(7×1)  and ei (7×1)  are normally distributed noise 
vectors. The signal to noise (S/N) ratios in the second 
and third subproblems are 8 and 4, respectively. 

Figure 9 shows the cross-validation R 2 values for the 
simulations. All of the training R2 values were close to 1. 
We note the following observations: 

1. The multivariate NLPLS boxes are longer than the 
univariate NLPLS boxes and the multivariate NLPLS 
box plots have more extreme values. Thus, multi- 
variate NLPLS is more sensitive to starting values. 
We conjecture that this is a result of the multivariate 
NLPLS models having more parameters and thus a 
larger parameter space. 

2. Univariate NLPLS is more sensitive to noise. The 
multivariate NLPLS models give better predictions 
for the response variables on the high noise (SN=4) 
problem than univariate NLPLS. 

3. The best multivariate NLPLS fits are better than 

0 

-1.0 ~.5 0.0 0.5 1.0 

xl 

Fig. 8. A sequential NLPLS curve extracted for the first factor 
in a model that has small R 2 values for subsequent factors. The 
curve tried to wiggle throughout the entire domain and we 
suspect this makes it difficult for subsequent factors to model 
the response variable residuals. 

univariate NLPLS, although the variance of the 
univariate NLPLS fits is smaller. We attribute the 
larger variance of the multivariate NLPLS models to 
their having more parameters. 

4. The predictions of y3 are worse than those ofy~ try2 
for multivariate NLPLS. We suspect that the reason 
for this is that the relationship between Y3 and the 
predictor variables is more nonlinear than the rela- 
tionship between Yl or )'2 and the predictor variables. 

6.3. Composite materials 

An application of NLPLS is in the process control of 
the fabrication of composite materials. Composite mate- 
rials are very expensive to manufacture because of (1) 
high scrap ratesH; (2) rework; and (3) labor-intensive 
methods of inspection ~2. We investigated how informa- 
tion on certain quality variables like refractive index, 
temperature, and phase of cure cycle can be used by the 
process engineer to modify the process and avoid 
producing scrap material. Many of the quality variables 
are difficult or expensive to measure directly. Alter- 
natively, the quality variables can be estimated from 
other process data. During fabrication, a sensor can be 
included in the material to collect infrared spectroscopy 
data, which describe the absorption properties of the 
materials being fabricated at different wavelengths over 
the curing process. We are investigating how these data 
can be used to predict the key-quality variables. 

Northwestern University's Basic Industry Research 
Laboratory (BIRL) has developed and tested a sensor to 
collect infrared spectroscopy data and collected compos- 
ite material data. They used their sensor to measure 
absorption properties at p=466 different wavelengths. 
Three measurements were taken at 28 different times 
during the cure process, giving 28 x 3 = 84 observations. 
An NLPLS model was fitted and one of the points was 
identified as an outlier (identified on Fig. 10). The outlier 
was removed and the remaining 83 observations were 
split into training and cross-validation sets. We selected 
one time at random from each of the three phases of the 
cure cycle and the three observations at the three times 
were used for cross validation giving 3 x 3 = 9  CV 
points. The remaining 74 points were used for training. 
Because training a neural network with 466 input nodes 
would be difficuk, we reduced first the dimension of the 
predictor variables with principal components analysis. 
The first three principal components of the 74 X 466 
training matrix accounted for 99.90% of the variance 
and the first three principal component score vectors 
were used as predictor variables (p=5) instead of the 
original 466 to avoid having a neural network with 466 
input nodes. To visualize the data, Fig. 10 plots the first 
three principal component scores. The predictors 

1~ Scrap rates can be as high as 40% (Fildes, 1995). 
12 Twenty-five percent of labor costs are for post-process 
inspection (Fildes, 1995). 
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Fig. I0. Plot of predictor variables in composite-materials 
example. 

approximately follow a V-shaped curve. NLPLS can be 
used to extract this curve and reduce the noise in the 
predictor variables and the one-dimensional scores 
contain nearly the same information as the original 466 
coordinates. 

We predicted the refractive index and temperature 
with NLPLS t3, three-layer neural networks (NN), PLS, 
PCR, and projection pursuit pursuit regression (PPR). 
We fitted the NLPLS and NN models ten times with 
different starting values. We fitted PLS, PCR, and 
projection pursuit models with r= 1 ..... 5 and selected the 
model giving the largest cross-validation R 2. The box 
plots in Fig. 11 show the R 2 values for the training and 
cross-validation data. All of the methods give good 
predictions to the temperature response variable, but the 
NLPLS models are sensitive to starting values. For 
refractive index, NN models gave the best predictions 
followed by the best NLPLS models, PLS, PCR, and 
PPR. Projection pursuit seems to overfit the data because 
it has the highest R 2 value on the training data, but a 
smaller R 2 value on the cross-validation data. The 
variance of the R 2 values for NN models was very small 
compared with the variance for NLPLS models. The NN 
models were thus more robust to starting values than the 
NLPLS models. We attribute this to the NLPLS models 
having more parameters than the NN models. 

The NLPCA score values can be used to determine the 
phase in the cure cycle. The cure cycle follows the V- 
shaped curve in Fig. 10. Phase 1 occurs along the left- 
hand side of the V, where there is large variation along 
the second principal axis and almost none along the first 
principal axis. Phase 2 occurs around the vertex of the V 
where there is a rapid change along the third principal 
axis. Phase 3 occurs along the right-hand side of the V, 
where there is variation along all three principal axes. 
Thus, score values ~4 less than some constant a~ indicate 
that the process is in Phase 1, score values greater than 
some constant a2 indicate Phase 3, and scores between a~ 
and a2 indicate Phase 2. 

t3 Simultaneous and sequential NLPLS models are identical, 
since only one nonlinear factor must be extracted to model the 
relationship between predictor and response variables. 
i4We assume that the curve has a parameterization that 
increases with phase. 

7. Condusions 

Our conclusions regarding NLPLS are as follows: 

1. When the observed predictor variables lie on a curve 
or surface, the simultaneous NLPLS models can 
produce a more parsimonious model, i.e. a smaller r 
and thus fewer score vectors, than projection-based 
methods. When the observed predictor variables do 
not lie in a nonlinear subspace, other nonparametric 
regression methods should be used, since NLPLS has 
no advantage over the other methods in this case. 

2. Because NLPLS models the observed predictor 
variables with a curve or surface, outliers and points 
requiring extrapolation can be detected easily. 

3. NLPLS has the same approximation properties as a 
three-layer NN. 

4. Sequential NLPCA is highly sensitive to starting 
values and has a tendency to overfit the data. 
Projecting the predictor variables onto curves seems 
to give the model too much flexibility and our 
empirical results suggest that a simultaneous NLPLS 
model or a projection-based regression model will 
give better predictions on cross-validation data sets. 
Therefore, we do not recommend sequential NLPLS. 

5. Multivariate NLPLS seems more sensitive to starting 
values than univariate simultaneous NLPLS. Uni- 
variate NLPLS is more sensitive to noise when there 
are multiple response variables that are related to 
each other; in these cases, we conjecture that the 
reason for this is that multivariate NLPLS models the 
relationship among the predictor variables. 

6. In general, the quality of predictions measured in 
terms of R 2 from simultaneous NLPLS models is 
roughly as good as the quality of predictions from 
three-layer neural networks and projection pursuit. In 
situations favorable to NLPLS, it can provide margin- 
ally better estimates. However, the NLPLS solutions 
are much more sensitive to starting values and require 
more computational effort than three-layer neural 
networks or projection pursuit. 

Based on our empirical experience, the projection- 
based regression methods give equally good prediction 
accuracy with less computational effort than simultane- 
ous NLPLS. The only situation where NLPLS has a 
clear advantage over projection-based methods is when 
the predictor variables lie in a nonlinear subspace and 
the modeler is interested in outlier or extrapolation 
detection. However, we feel that many of the limitations 
of NLPLS can be overcome. Thisted (1988, p. 19) wrote, 
"[Projection pursuit] requires so much computation that 
even ten years ago its routine use would have been 
hideously expensive. That is no longer the case." As 
faster computers and better nonlinear optimization 
algorithms become available, perhaps the same will be 
said about NLPLS. 
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